
An Automation Language for Managing
Operations in the Deep Space Network (ALMO)l

Patricia F. Santos, Paul Pechkam

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, M/S 156-201
Pasadena, CA 91109-8099

{Patricia.F.Sarttos, Paul. Pechkam}@jpl.nasa. gov

Abstract

We developed a language called the Automation Language for Managing
Operations (ALMO). It was designed to automate the operations of
communications links in NASA’s Deep Space Network (DSN). ALMO was
developed in response to a number of deficiencies that were identified with the
previous languages and techniques used to manage DSN link operations. These
included a need to: (1) provide visibility into the different link devices in order to
recognize an anomaly and alert the operator when it occurs, (2) provide an
intuitive and simple language capable of representing the full spectrum of
operations procedures, (3) mitigate the variations in operating procedures
experienced between different complexes and tracking supports, and (4) automate
the overall operation, reducing cost by minimizing man hours required to
configure devices and perform activities. With ALMO, for the first time DSN
operators are able to capture sequences of activities into simple instructions that
can be easily interpreted by both human and machine. Additionally, device
information, which used to be available only via screen displays, is now
accessible for operator use in automating their tasks, thus reducing the time it
takes to perform such tasks while minimizing the chance of error. ALMO is
currently being tested at the Deep Space Communications Complexes in
Canbena, Australia and Goldstone, California.

Key Words: Automation, Deep Space Network, Subsystems, Link Operators

1. Introduction

‘ The research described in this paper was earned out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

The Deep Space Network (DSN) is a worldwide network of spacecraft tracking
and communications complexes located in Madrid, Spain; Canberra, Australia;
and Goldstone, California. Each complex is capable of performing multiple
missions simultaneously, all of which involve operating communications links,
A DSN communications link is a collection of devices used to track and
communicate with a spacecraft (Ref. 2). Examples of devices include antennas of
various sizes, from diameters of 26 meters to 70 meters, transmitters and
receivers. Such devices, per link, must share a complex’s capabilities and time
allotments/constraints.

The goal of ALMO is to automate DSN link operations by reducing the amount of
time it takes to configure, calibrate, and operate the communications links used to
support deep space communications missions (Ref. 1). Currently, operators
perform hundreds of keyboard entries to configure the different DSN devices
required to perform specific pre- or post-track activities. These keyboard entries
are either “directives” (control messages to subsystems instructing them to
perform specific tasks) or are commands to invoke displays that monitor the health
and status of one or more devices. Current manual operations require that
operators have a considerable knowledge of how to operate the different devices
and their dependencies. Operators must also be aware of the many diagnostic
messages devices send to the link controller in monitoring the link, and assure that
directives sent to the devices have the intended effect. This process is error-prone,
time-consuming, and labor-intensive.

Previous attempts were made to improve this process and to decrease the work
load placed on link operators. The first language attempting to automate DSN
operations was the Macro language. The Macro language provided limited flow
control, imposed a limit on the size of a script, and provided only a few constructs
for performing link activities. In addition, it did not include mechanisms for
automatic parameterization. These limitations forced operators to create different
versions of a script for use with different tracking supports, making maintenance
of these scripts difficult,

The second language used was an off-the-shelf scripting language called
BasicScript. At first, BasicScript seemed to meet the needs of automating link
operations. But it lacked the constructs that automation needs to easily perform
DSN operations, imposed size restrictions on scripts, limited usage of variables
and subroutines, and required that operators understand every detail and all the
code used to monitor and control the various devices. BasicScript also employed a
one-layered architecture, which meant that a script contained all the encoded
knowledge required to perform a task, and contained the code by which the script
communicated to the transport layer underneath it. Additionally, all the monitoring
and diagnostic functions were visible in the script, including invocation of
graphical user interfaces used to obtain information from the operators. This made
it tedious and difficult for operators to understand and modify a script, especially
should last minute changes be required.

2

2. Goals

The challenge was to reduce operations cost by simplifying and minimizing the
amount of time required to operate the DSN. We needed a tool that would reduce
the operator workload, number of errors, and recovery time oftentimes associated
with complex, manual operations and resource limitations, With these in mind we
developed ALMO, which has the following features:

Extensible: Capable of representing the full spectrum of operations
procedures

Flexible” Allows for the variations in operations procedures between—— .
different operations complexes and tracking supports

Robust: Provides the constructs necessary to identify problems, accesses
device monitor data and diagnostic information, tailors general
procedures to specific circumstances

Maintainable: Easy to update and maintain
Usa Natural: Readable and usable by both computer and human operator

(Ref. 3)

3. ALMO

3.1 Definition

ALMO stands for Automation Language for Managing Operations. It was
implemented using the C language and an embeddable scripting language called
Tcl/Tk (Tool Command Language). Tcl was chosen as the base scripting language
because it: (1) allows new commands to be added with ease, (2) allows us to
achieve an easier-to-understand syntax,l and (3) is a reliable and commercially-
accepted product.

A disadvantage of adopting a commercially-available product is that bugs from
other vendors may be incorporated into the software. (Fortunate y, this is not a
problem with which we have had to contend,) The advantages are: (1) reduction
in time and cost of development, and (2) reduction in the testing and maintenance
of the language.

A prototype was developed and successfully demonstrated. It was later ported into
an operational version which is current] y being tested.

‘ Link operators with little or no progmmming experience will be writing scripts, so easily
understood commands and scripting language syntax are important.

3

3.2 Key Components

3.2.1 Network Monitor and Control (NMC), TDNs, Blocks

ALMO uses the NMC Software as its means of communicating to the various
DSN link devices, or subsystems. It provides real-time monitor and control of the
DSN. The NMC uses Temporal Dependency Networks (TDNs) to automate pre-
and post-track calibration of subsystems. A TDN is a directed graph of
interconnected nodes that represents an end-to-end sequence of operations. It also
specifies sequential and parallel operations, Each node in a TDN is called a block.
A block contains pre- and post-track conditions, and directives that are sent to the
subsystems sequentially. As mentioned earlier, a directive is a control message
sent to an individual subsystem instructing it to perform a specific task. A block
may contain one or more directives to more than one subsystem and is written in
ALMO.

3.2.2 Directive Responses, Monitor Data, Event Notice Messages

ALMO allows operators to access subsystem information that previously was only
viewable from screen displays. This information can be used to monitor and
control the subsystems, determine the logical flow of a block, and detect ‘
anomalies when they occur.

When an operator sends a directive to a subsystem, the subsystem returns a
directive response, which is simply an acknowledgment that the directive was
received. It does not indicate the successful or unsuccessful execution of a
directive (Ref. 4). However, the need to associate a directive response to its
specific directive is crucial in determining whether a directive was successfully
sent or not. ALMO provides mechanisms that identify directive responses with
their associated directives. Furthermore, it is important to determine whether a
directive had the intended effect. ALMO uses either or both monitor abta or event
notice messages to verify successful or unsuccessful execution of directives.
Monitor data is data provided by a subsystem that reflects its state and its
parameter values and is stored in a pre-defined format. Event notice messages are
textual messages that relay information about the state of a subsystem or a value
of a subsystem parameter. However, when monitor data and event notice messages
are generated, they are not explicit] y tied to any directive. The operator must rely
on his/her experience to determine which directive was most likely to have caused
the subsystem to send the event notice message or generate the monitor data
change. ALMO allows an operator to verify directive execution by specifying
which monitor data items and event notice messages to check, and automatically y
alerts the operator if it detects an anomaly.

4

3.3 Architecture

ALMO commands are parsed, interpreted, and implemented via an engine. The engine
is a UNIX process that runs on a workstation, in our case a SUN Ultra 2. The engine
can be broken down into four (4) key areas: the command interpreter, event handler,
intercommunication protocols, and the GUI.

3.3.1 Command Interpreter

The command interpreter is the component that includes the ALMO command library,
and the interpreter that translates the ALMO command into machine language and
executes it before going to the next ALMO command, The command interpreter
incorporates Tel, an embeddable and interpreted scripting language which provides
generic programming facilities as variable substitution and control flow. An extension
to Tcl called Tk is included to provide graphical routines. Lastly, commands that we
designed and developed mainly for interacting with subsystems are added to the mix.
The whole of these parts forms ALMO. Thus, the ALMO library comprises of the Tcl
Interpreter, Tcl commands, Tk commands, and ALMO commands. Shown in Figure 1

is the ALMO Library.

ALMO Librarv

I 1

Tk Libr

a

.:.,.,.,.,.:.,.:.:.:.:.:.:,:,,,,,,,,,,w?:?:%::..::::::::::::::: ,,-.,...................::::,:,:,:,:,:,:,:,:,:,:,:,m.:.:.~,:,:,:,:,:,:,:,:,...... ,,,........................:,::.:.<.:.,:.,.,.,.,.,.<.:,<,;.:..,..............................~zp$ggwig

‘C2

mm,.,.:::,,,,,:j,:;~::,:>,,~....:~ ,,,,,,,,,*.:,:,:,:,:,:::::,:,ti:,~,.w::::::::,:,!::,:,~..:.:.:.W:.S.:.:.:.:.:.:.S.,.,
.........................

m m-mm ‘=
Built-in Tcl Commands

mum-
ALMO Commands

I I

Figure 1. ALMO Library

5

3.3.2 Event handler

The event handler is the component responsible for collecting and processing
“events” or notices of activity from subsystems, the graphical user interface
(GUI), and/or the external and internal infrastructure. More importantly, the event
handler is key in responding to events, allowing you to write event-driven blocks,
ie., instead of processing instructions sequential y, the event handler waits for
events to come in and then acts upon them.

There are various forms of events. Internally there are events produced by the
GUI, or there are messages from another process with information or a request. In
addition, the engine should be able to respond to control commands from the user.
Such commands include pausing and running. The script may also need to make
parameter or display requests, for example, to another engine. Likewise, the
engine should be able to receive and process the responses from other engines.
Moreover, asynchronous communication is established, i.e., non-blocking
communication, so any messages will be stored and kept in an 1/0 buffer until
read. During script execution, the event-loop becomes active via calls to
event-handling routines, otherwise events do not get processed until the command
finishes. All of the above help in providing an event-driven engine that can
process ALMO commands in a script, while at the same time react to any GUI
requests or events from subsystems or other engines. We are indebted to the Tcl
library for providing functions needed to accomplish a goodly portion of this.

In the NMC environment there are two engines that communicate with the ALMO
engine: a connection engine, which is part of the NMC workstation software, and
a TDN engine, which is part of the NMC Automation software. The connection
engine is used to route and log directives to subsystems as well as collect event
information for its operations logs. It is merely a method for the operator to
collect directives from simultaneous y running blocks and confirm their sources
and destinations for security reasons. Otherwise, the ALMO engine is fully
capable of routing the directives directly to the subsystems themselves, On the
other hand, the TDN engine is used for routing user information collected from
the operator, information tables, or monitor data from other outside sources.
Figure 2 illustrates the ALMO architecture.

6

A

Directives
Op.sLog
Messages

Parameter Values
Control Commands

Directive Responses Prompt Responses

+

Figure 2. ALMO Architecture

3.3.3 Intercommunication Protocols

The ALMO engine can interact with a number of different processes and
devices/subsystems. In order for it to exchange information with these, however,
all participants must be able to understand each other. This is accomplished
using intercommunication protocols that define a common language.

UNIX pipes are used to establish connection between the ALMO engine and the
TDN engine, which is also a UNIX process, and text messages are used as the
communication protocol. Since TDN is part of NMC Automation, and the NMC
workstation employs the DSN Common Services for communicating with
subsystems, the ALMO engine inherits this additional foundation, which
includes the Monitor and Control Services (MCS). MCS is based on an

implementation of the Distributed Computing Environment (DCE) and
Distributed File System (DFS), and uses Remote Procedure Calls @PCs) for
interprocess communication. Figure 3 shows the intercommunication protocols
used by ALMO.

7

4 +

Remote procedure calls (WC)

Pipes (stdin/stdout)

Figure3. Intercommunication Protocols in ALMO

Outside applications are possible, but the intercommunication protocols and
transport layer, defined for ALMO by Monitor and Control Infrastructure
Services (MCIS) and DCE/DFS (depicted above), would have to be adapted
through use of an Application Programming Interface (API),

3.3.4 Graphical User Interface

A graphical user interface is provided to display ALMO blocks that has the ability
to show an active script during execution. A “bouncing ball” indicates which
command is currently being processed, Perhaps most importantly, the GUI allows
the user to control execution of the block, e.g. pause, resume, reduce or increase
execution speed. The graphical user interface is developed entire] y in Tk, the
graphical extension to ALMO’s Tcl code. A snapshot of the Block Viewer is
shown in Figure 4.

8

Figure 4. The Block Viewer

3.4 Language Description

3.4.1 Language Features

ALMO provides many constructs for performing DSN link operations. Some of the features are:

●

●

●

●

●

●

●

specifying a block’s associated displays information
sending messages to the display log
declaring, polling, subscribing, and fetching monitor data
obtaining parameter inputs form either the operator or electronic source
querying for a subsystem’s link status, i.e., is the subsystem in the link or not?
suspending and resuming block execution

querying for a subsystem’s short and long Directive Destination Code
(DDC) name

9

●

●

●

●

●

●

●

●

verifying directive status via monitor data, event message, and/or
operator confirmation
prompting the operator to make a selection among several options
prompting the operator to enter a parameter value
obtaining the current time
comparing, adding, and subtracting time
subscribing and unsubscribing to event notice messages
calling one or more blocks within a block
delaying block execution

Shown in Table 1 is a complete list of ALMO commands.

ALMO Command
startBlock
display
monitem

~aram
Activities

inLink
getShortDDC
getLongDDC
selectop

inputop

getUTC
cmpUTC
addTime
subTime

compare
OD
opsLog
venfj$ts

call

release

eventSubscribe
eventUnsubscribe
delay
wait
endBlock

~

Are uired command that defines the start of a block
Defines and declares a dls la associated to a block
Declares, subscribes, polls, and fetches monitor data to be used in

Sends a parameter request
A required command that indicates the start of activities in a
block
Queries the connection for Subsystem link status
Returns: short DDC Name if subsystem is in the link
Returns: long DDC Name if subsystem is in the link
Invokes a dialog box and prompts the operator to make a
selection
Invokes a dialog box and prompts the operator to enter a string
input
Returns the current time in Universal Time Coordinated (UTC).
Compares current time with a given time
Returns the new time after adding <period of time> to <time>.
Returns the new time after subtracting <period_of_time> from— —<time>
Performs either string or numerical comparison
Sends a directive
Sends a message to the log
Verities the status of a directive or a subsystem using one or
more monitor data, event notice message, operator confirmation
Runs another ALMO block (child block) while the caller block
(parentblock) waits for the child block to finish. When the child
block is finished, the parent resumes execution.
Runs another ALMO block (child block) while the caller block
(jarent block) continues execution after it has “released the
child block. The parent block does not wait for the child block to
finish and runs in parallel with the “released block.
Subscribes to events from the event message sewer
Unsubscribes to an event
Set delay in block execution
Suspends block execution for a given period of time
A required command that defines the end of a block

Table 1. ALMO Commands

10

3.4.2 Key Features

ALMO has several features that make it an ideal language for automating DSN
operations. One is its ability to automatically parametrize blocks. In an effort to
minimize human intervention, ALMO has provided constructs that allow an
operator to specify electronic sources for parameters that are required in a block.
The operator is also given the option to provide a default value in the event that
the ALMO engine is unable to automaticallyy obtain one from the specified source.
If an operator runs more than one block, each of which requiring at least one
parameter, these values are cohesively obtained and presented. The operator must
intervene only once, to either confirm or modify the values.

ALMO also allows operators to use traced variables when appropriate. A traced
variable registers a command to be called whenever a variable is accessed,
modified, or unset (Ref. 5). Traced variables are especially handy when using
monitor data in blocks. By declaring a monitor data item once in a block, the
ALMO engine registers a subroutine that is automatically invoked when a
specific monitor data is used in a block.

ALMO also provides several mechanisms for accessing subsystem information
that may be used for monitor, control, and diagnostic purposes. Information such
as directive responses, monitor data, and event notice messages, that used to be
available only by invoking subsystem displays, is now available to an operator.
Access to this information provides the operator with a lot of flexibility and
control. Additional y, it allows an operator to incorporate an error detection and
operator notification capability in a block. However, ALMO already has built-in
error detection capabilities within all of its commands. Whenever an anomaly is
detected, the operator is alerted and presented with several possible courses of
action.

In addition, the features that make ALMO an ideal language for automation also
make it an ideal language for testing. ALMO allows a tester to invoke test
functions, check results, and report errors. Test scripts can be developed rapidly
and saved for regression testing. Used in whatever capacity, ALMO serves as a
useful tool by applying a flexible and simple interface for interacting and
manipulating hardware or software. For example, ALMO can be used to test new
DSN devices or devices that have been upgraded before they can be used
operationally in the DSN.

2The subroutine registered by the ALMO engine has the same name as the traced monitor data.
For example, if a monitor data is declared as “MDASTS” in a block, a subroutine called
“MDASTS” will be registered. A reference to the variable “MDASTS” (“$MDASTS”, which
means “the value of the monitor data named ‘MDASTS’”) will invoke a subroutine called
“MDASTS” which will fetch the value of the monitor data from the subsystem.

11

3.4.3 Sample Block

A block written in ALMO is concise, readable, and easy for operators to
understand, while ALMO’s simple, high-level commands do most of the work.
ALMO is able to greatly reduce the amount of code an operator has to write
and/or understand. In fact, a nine-page block written in BasicScript was reduced
to one page when converted to ALMO. The block in Figure 1, written in ALMO,
configures the DSN’s Metric Data Assembly (MDA) subsystem and is currently
being tested at the Deep Space Complexes in Canberra, Australia and Goldstone,
California.

1 startBlock “CNF Tracking”
2
3 #Parameter Inputs
4
5 # For three way tracking mode, get uplink dssid and append it.
6 monitem NMC SOE_Way
7 if {$SOE_Way == 3} {
B monitem NMC SOE_3WayDSS
9 set way ${SOE_Way} W${SOE_3WayDSS}
10 } else {
11 set way $SOE_Way
12 }
13
14 param dssid “DSS ID” corm SOE Dss
15 param predSetID “Predict Set IDFconn FranzCode
16 param LNAband “Downlink Band” coM SOE_LNAband
17 param bot “Beginning of Track” corm SOE_Bot
18 param sam “Sample Rate” corm SOE_Doppsample
19 parzim way “Track Mode/Way” op $way
20
21
22 #Associated Displays
23 display TRK CNF
24 display TRK DAR
25 display TRK SETS
26
27 Activities
28
29 # Currently use channel 1 for S-band, 2 for X-band
30 if {$LNAband’= “S”} {
31 setnl
32 } else {
33 set n 2
34 }
35
36 inLink TRK
37
38 monitem TRK MDASTS ;#seg4, item4

12

~ if! [compare OPERATIONAL $MDASTS] {
41 selectop “The MDA is not operational” Continue Restart Abort
42 }
43
44 verifySts md TRK MDAMDE IDLE
45
46
47 # Activities Section
48
49
50 if {($dssid == 15) II($dssid == 45) II($dssid == 65)} {
51 OD TRK “RCVB5 E“
52 }
53
54 OD TRK “RANGE D“
55
56 OD TRK “SAM $sam” C:WAIT 7
57 verifjNts md TRK [format “CYOSSMP”$n] $sam
58
59 OD TRK “WAY $way” C:WAIT 7
60 verifySts md TRK [format “C’YOSWAY”$n] [string index $way O]
61
62 OD TRK “PRED $predSetID” C:WAIT 7
63 verifySts md TRK DPRDID $predSetID
64
65 set time [subTime $bot 000:00:05:00]
66 #Same as variable “time” but with no colons and no DOY (per timed direct
format)
67 set forrnattedTime [subTime $bot 000:00:05:00 -noDOY -nocolon]
68
69 if {[cmpUTC $time] ‘= 1} {
70 OD TRK “RUN”
71 wait 7
72 verifjf3ts md TRK MDAMDE RUN
73 } else {
74 OD TRK “RUN NORPT”
75 wait 7
76 verifySts md TRK MDAMDE RNHR
77
78 getLongDDC sd TRK
79 OD NMC “A$formattedTime $sd RUN”
80 }
81
82 endBlock “CNF Tracking”

Figure 5. Block written in ALMO

This example defines parameters, sends directives to a subsystem identified as
TRK (the generic subsystem name for the MDA), and checks the subsystem after
each directive is sent. The first command executed will be startBlock which
takes one argument, the name of the block, which it uses for logging purposes. In
addition, the command handles initialization of the engine including establishing
the communication route from the engine to the subsystem. On the other hand,

13

endBlock (line 82) is used to indicate the end of the block and handles
shutdown of the engine as well as log the end of block execution. If the engine
were to quit before endBlock is reached, the engine will exit the same way with
the exception that it is considered an “abnormal exit”.

The group of commands between startBlock (line 1) and
Act ivit ies (line 27) is considered the declarations section, where parameter
requests are collected and information is passed between the TDN engine and the
ALMO engine. These param commands are compiled and processed when

Activities (line 27) is reached. After the user has filled in values for the
parameters, block execution then proceeds to the if statement on line 30 in what
is considered the activities section. The if statement simply determines the
value of n depending on what the variable LNAband is set to, as determined by
the value of monitor data item SOE_LNAband (line 16).

To check the health of a subsystem, a monitor data item must be
subscribed to and the monitor data value checked. This can be accomplished with
the monit em command on line 38. The following if statement (line 40)
compares the value of MDASTS to the text “OPERATIONAL”. If it matches,
then execution proceeds to the next command, Note that the same logic can be
accomplished using a simpler implementation, “veri f ysts md TRK

MDASTS OPEIWTIONAL”.

If the subsystem is healthy, then the block will send a number of
directives via the OD command. The directives configure the MDA for spacecraft
tracking, but more importantly, after most of the directives is a veri f ysts
command that checks the subsystem to confirm that the directive actually
performed its intended action.

The commands starting at line 65 determine what directive to send based
on what time it is. If the current time is not within 5 minutes of its designated
start time (stored in the variable bet), then it will timestack a directive (line 79).
Otherwise, it sends a “RUN” directive immediately. Lastly, as described above,
if the block has executed the way it was intended, then endBlock (line 82) will
be executed, and the block has finished running.

4. Status

Enhancements are being made even as ALMO is in the Pre-Acceptance Test
phase. New commands, added to the already existing set, would enable operators
to write event-driven blocks based on monitor data. In conclusion, some research
tasks have expressed interest in using ALMO to develop blocks for fault,
detection and recovery systems. All of this indicates that a ceiling has not yet
been reached as to ALMO’S flexibility and capability.

14

5. References

1. Cooper, Lynne P., Rajiv Desai and Elmain Martinez, “Operator Assistant to
Support Deep Space Network Link Monitor and Control,” SOAR Symposium,
Houston, TX 1991.

2. Hill, Randall W., Jr., Kristina Fayyad, Patricia F. Santos and Kathryn
Sturdevant, “Knowledge Acquisition and Reactive Planning for the Deep
Space Network,” Working Notes of the 1994 Fall Symposium on Planning
and Learning: On to Real Applications, AAAI Press: New Orleans, LA 1994.

3. Fayyad, Kristina E., and Lynne P. Cooper, “Representing Operations
Procedures Using Temporal Dependency Networks”, SpaceOPS 92: Second
International Symposium on Ground Data Systems for Space Mission
Operations, Pasadena, CA, 1992.

4. Hill, Randall W., Jr., Steve Chien, Kristina Fayyad, Patricia F. Santos, and
Crista Smyth, “Planning for Deep Space Network Operations”, Proceedings of
the 1995 AAAI Spring Symposium on Integral Planning Applications, Palo
Alto, CA, March,1995,pp.5 1-56.

5. Welch, Brent B., “Practical Programming in Tcl and Tk”, Prentice Hall, Inc.,:
New Jersey, 1995, p. 79.

15

